M62212P/FP/GP

General Purpose DC/DC Converter

REJ03D0843-0200
Rev.2.00
Jun 14, 2006

Description

M62212 is designed as a general purpose DC/DC converter.
This small 8-pin package contains many functions allowing simpler peripheral circuits and compact set design.
The output transistor is open collector and emitter follower type. This makes the control STEP-UP, STEP-DOWN and INVERTING converter.

Feature

- Wide operation power supply voltage range........ 2.5 to 18 V
- Low power consumption................................ 1.3 mA typ
- High speed switching is possible (300 kHz).
- Output short protection circuit and ON/OFF control are used.

The dead-time control and the soft-start operation are possible

- Package variation: 8-pin DIP/SOP/SSOP8

Applications

General electric products, DC/DC converter

Block Diagram

Pin Arrangement

Absolute Maximum Ratings

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Ratings	Units	Conditions
Power supply voltage	V_{CC}	19	V	
Output voltage	V_{O}	19	V	
Output current	I	150	mA	
Power dissipation	Pd	$625(\mathrm{P}) 360(\mathrm{FP}) 250(\mathrm{GP})$	mW	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
Thermal derating ratio	$\mathrm{K} \theta$	$5.00(\mathrm{P}) 2.88(\mathrm{FP}) 2.00(\mathrm{GP})$	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta}>25^{\circ} \mathrm{C}$
Operating ambient temperature	Topr	$-20^{\circ} \mathrm{C}$ to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	$-40^{\circ} \mathrm{C}$ to +125	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{OSC}}=100 \mathrm{pF}\right.$, unless otherwise noted $)$

Block	Item	Symbol	Limits			Units	Test Condition
			Min	Typ	Max		
All device	Range of power supply voltage	V_{CC}	2.5	-	18	V	
	Standby current	$\mathrm{I}_{\text {c S St }}$	-	1.3	1.8	mA	Output "OFF" status
Std. voltage section	Standard voltage	$V_{\text {REF }}$	1.19	1.25	1.31	V	Voltage follower
	Line regulation	LIINE	-	5	12	mV	$\mathrm{V}_{\mathrm{CC}}=2.5$ to 18 V
Error Amp. section	Input bias current	I_{B}	-	-	500	nA	
	Open loop gain	A_{V}	-	80	-	dB	
	Unity gain bandwidth	G_{B}	-	0.6	-	MHz	
	Output high voltage	$\mathrm{V}_{\text {OM }}+$	1.82	-	2.62	V	
	Output low voltage	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$	-	-	400	mV	
	Output sink current	lom+	-	6	-	mA	$\mathrm{V}_{\mathrm{FB}}=1.86 \mathrm{~V}$
	Output source current	IOM ${ }^{-}$	-	-60	-30	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$
Oscillator section	Oscillation frequency	fosc	-	110	-	kHz	
	Upper limit voltage of oscillation waveform	Vosch	-	1.0	-	V	
	Lower limit voltage of oscillation waveform	Voscl	-	0.45	-	V	
	Cosc charge current	losc ch	-	-40	-	$\mu \mathrm{A}$	
	Cosc discharge current 1	losc dis 1	-	10	-	$\mu \mathrm{A}$	
UVLO section	Start-up threshold voltage	$\mathrm{V}_{\text {TH ON }}$	2.2	2.3	2.4	V	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$
	Shut-down threshold voltage	$\mathrm{V}_{\text {TH OFF }}$	-	2.25	-	V	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$
	Hysteresis	$\mathrm{V}_{\mathrm{HYS}}$	20	50	80	mV	$\mathrm{V}_{\text {HYS }}=\mathrm{V}_{\text {THON }}-\mathrm{V}_{\text {THOFF }}$
Short protection circuit	FB threshold voltage	$\mathrm{V}_{\text {TH FB }}$	-	1.86	-	V	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {DTC }}=0.7 \mathrm{~V}$
	Latch mode " H " threshold voltage	$\mathrm{V}_{\text {TH DTC }}$	-	1.15	-	V	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.11 \mathrm{~V}$
	Latch mode "L" threshold voltage	$\mathrm{V}_{\text {TL DTC }}$	-	0.3	-	V	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.11 \mathrm{~V}$
	DTC charge current when start-up	$\mathrm{I}_{\mathrm{CH} 1}$	-	-45	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DTC }}=0.7 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=2.11 \mathrm{~V}$
	DTC discharge current 1	IDIS 1	-	50	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DTC }}=0.7 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=2.11 \mathrm{~V}$
	DTC charge current when stable state	$\mathrm{I}_{\mathrm{CH} 2}$	-	-10	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DTC }}=0.7 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.7 \mathrm{~V}$
	DTC discharge current 2	IDIS2	-	15	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DTC}}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.11 \mathrm{~V}$
Output section	Collector output leak current	I_{CL}	-1	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CE }}=18 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=18 \mathrm{~V}$
	Collector output saturation voltage 1	$\mathrm{V}_{\text {SAT1 }}$	-	0.3	1.1	V	Emitter GND, $\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}$
	Collector output saturation voltage 2	$\mathrm{V}_{\text {SAT2 }}$	-	1.6	-	V	Emitter follower, $\mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{C}}=12 \mathrm{~V}$

Application Circuit

Figure 1 STEP-DOWN Converter with Current Buffer Transistor

Function Description

1) Soft start (The peripheral circuit is shown in Figure 1)

When the power is turned ON, input terminal IN is at 0 V level. Therefore, the FB terminal is fixed to High level. The DTC terminal goes up gradually starting from 0 V due to the internal charge current and the external $\mathrm{C}_{\mathrm{DTC}}$. When the level of DTC terminal reaches the lower limit of the triangular wave of the oscillator, PWM comparator and the output circuit go into operation causing the output voltage, " V_{O} " of the $\mathrm{DC} / \mathrm{DC}$ converter to rise. The charge current is designed to be approximately $45 \mu \mathrm{~A}$.

Figure 2
2) DTC

The dead time control is set by installing a resistor between the DTC terminal and GND. However, the DTC terminal serves as the short protection circuit also. Therefore, its set up depends on whether the short protection circuit is used and not.

- When the short protection circuit is used At this time, the charge current for DTC is approximately $10 \mu \mathrm{~A}$. Therefore, $\mathrm{R}_{\mathrm{DTC}}$ should be set to $40 \mathrm{k} \Omega$ to 110 $\mathrm{k} \Omega$.
- When the short protection circuit is not used At this time, the charge current for DTC is approximately $45 \mu \mathrm{~A}$. Therefore, $\mathrm{R}_{\text {DTC }}$ is set to $12 \mathrm{k} \Omega$ to $25 \mathrm{k} \Omega$.

3) Short protection circuit

The short protection circuit used the timer latch system. It is determined by setting the capacity used for the soft start connected to the DTC terminal.
Figure 3 shows the short protection circuit and the timing chart for various modes.
When the power is turned on, the FB terminal goes high (approx. 2.3 V) and the DTC terminal goes low. (goes up slowly from 0 V) Thus, approximately $45 \mu \mathrm{~A}$ current will flow when SW1: ON and SW2: OFF. The potential, namely the potential of the FB terminal is in the amplitude of the triangular wave, SW1 will be OFF and SW2 will be ON and approximately $50 \mu \mathrm{~A}$ will flow into the DTC terminal. This discharge current will cause the DTC terminal to drop from 1.15 V .
At this time, if the potential of the FB terminal goes to the control potential before the potential at the DTC terminal goes lower than 0.45 V which is the lower limit value of the triangular wave and if the potential of the FB terminal is lower than the potential of the DTC terminal, then the system is activated.
When the output is shorted, the system is either activated or latched depending on whether the time for the high potential of the FB terminal reaches the potential of the control state is long or short. (For detail, see [II] and [IV] of the Mode)
There are two ways to go back to operation after the latch to shut off output. Either method can restart with soft start.

1. Turning ON the V_{CC}.
2. Make the FB terminal to go to the low potential of 1.86 V or less. Then, it is cancelled.
[Mode Explained]
[I] Mode............ Activation
This is used when the FB terminal goes down to the control state potential when the DTC terminal is in up slope. In order for the activation to occur when the DTC terminal is in down slope, the FB terminal potential must go below the DTC terminal before the DTC terminal goes to 0.45 V .
[II] Mode. \qquad Output short \rightarrow Activation
The system is activated if the FB terminal potential goes below the DTC terminal potential before the DTC terminal goes to 0.45 V . If there is not enough time, the output is turned OFF. (Latched)
[III] Mode. \qquad ON/OFF control \rightarrow Activation
This mode turns off the output by forcing the DTC terminal to go down. (The system) returns as in the case of the activation.
[IV] Mode.............Output short (Latch)
The output is turned OFF when the FB terminal potential did not go down to the control state before the DTC terminal went down to 0.45 V .

Figure 3 Short Protection Circuit and the Timing Chart of the Modes

Constant Definition

Constant		Step-down Circuit	Step-up Circuit	Inverse Polarity Circuit
$\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}_{\mathrm{OFF}}}$		$\frac{V_{O}+V_{F}}{V_{\text {IN }}-V_{C E(\text { sat) }}-V_{O}}$	$\frac{V_{O}+V_{F}-V_{I N}}{V_{I N}-V_{C E(\text { sat) }}}$	$\frac{\left\|V_{\mathrm{O}}\right\|+\mathrm{V}_{\mathrm{F}}}{\mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}}$
$\mathrm{T}_{\text {ON }}+\mathrm{T}_{\text {OFF }}$		$\frac{1}{f_{\text {osc }}}$	$\frac{1}{f_{\mathrm{osc}}}$	$\frac{1}{f_{\text {osc }}}$
$\mathrm{T}_{\text {OFF (MIN) }}$		$\frac{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}}{1+\frac{\mathrm{T}_{\text {ON }}}{\mathrm{T}_{\text {OFF }}}}$	$\frac{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}}{1+\frac{\mathrm{T}_{\mathrm{ON}}}{\mathrm{~T}_{\text {OFF }}}}$	$\frac{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\text {OFF }}}{1+\frac{\mathrm{T}_{\text {ON }}}{\mathrm{T}_{\text {OFF }}}}$
$\mathrm{T}_{\text {ON (MAX) }}$		$\frac{1}{\mathrm{fosc}^{\prime}}-\mathrm{T}_{\text {OFF }}$	$\frac{1}{f_{\text {OSC }}}-\mathrm{T}_{\text {OFF }}$	$\frac{1}{\mathrm{f}_{\text {OSC }}}-\mathrm{T}_{\text {OFF }}$
$\mathrm{D}_{\text {(MAX) }}$		$\frac{\mathrm{T}_{\text {ON (MAX) }}}{\mathrm{T}_{\text {ON }}+\mathrm{T}_{\text {OFF }}}$	$\frac{\mathrm{T}_{\mathrm{ON}(\text { MAX })}}{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}}$	$\frac{\mathrm{T}_{\mathrm{ON}(\text { MAX })}}{\mathrm{T}_{\mathrm{ON}}+\mathrm{T}_{\mathrm{OFF}}}$
Cosc		$\frac{1}{75 \times 10^{3} \times \mathrm{f}_{\text {osc }}}-16 \times 10^{-12}$	$\frac{1}{75 \times 10^{3} \times \mathrm{f}_{\text {OSC }}}-16 \times 10^{-12}$	$\frac{1}{75 \times 10^{3} \times \mathrm{f}_{\text {Osc }}}-16 \times 10^{-12}$
$\mathrm{L}_{\text {(MIN) }}{ }^{* 1}$		$\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{CE}(\text { sat })}-\mathrm{V}_{\mathrm{O}}\right) \times \mathrm{T}_{\mathrm{ON} \text { (MAX) }}}{\Delta \mathrm{I}_{\mathrm{O}}}$	$\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{CE}(\text { sat })}\right)^{2} \times \mathrm{T}_{\mathrm{ON}(\text { MAX })^{2}} \times \mathrm{f}_{\mathrm{OSC}}}{2 \times \mathrm{V}_{\mathrm{O}} \times \mathrm{I}_{\mathrm{O}}}$	$\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{CE}(\text { sat) })}\right)^{2} \times \mathrm{T}_{\mathrm{ON}(\text { MAX })^{2}} \times \mathrm{f}_{\mathrm{OSC}}}{2 \times \mathrm{V}_{\mathrm{O}} \times \mathrm{I}_{\mathrm{O}}}$
$\mathrm{R}_{1}{ }^{* 2}$, *3		$\left(\frac{V_{\mathrm{O}}}{\mathrm{V}_{\text {REF }}}-1\right) \times \mathrm{R}_{2}$	$\left(\frac{V_{\mathrm{O}}}{\mathrm{V}_{\text {REF }}}-1\right) \times \mathrm{R}_{2}$	$\left(\frac{\left\|V_{\mathrm{O}}\right\|}{\mathrm{V}_{\text {REF }}}-1\right) \times \mathrm{R}_{2}$
$\mathrm{R}_{\text {DTC }}{ }^{* 4}$	Not use short protection	$\frac{\mathrm{V}_{\mathrm{DTC}(\text { MAX })}}{\left\|\mathrm{I}_{\mathrm{CH} 1}\right\|}$	$\frac{\mathrm{V}_{\mathrm{DTC}(\text { MAX })}}{\left\|\mathrm{I}_{\mathrm{CH} 1}\right\|}$	$\frac{\mathrm{V}_{\mathrm{DTC}(\text { (MAX })}}{\left\|\mathrm{I}_{\mathrm{CH} 1}\right\|}$
	Use short protection	$\frac{\mathrm{V}_{\mathrm{DTC}(\text { MAX })}}{\left\|\mathrm{I}_{\mathrm{CH} 2}\right\|}$	$\frac{\mathrm{V}_{\mathrm{DTC}(\text { mAX })}}{\left\|\mathrm{I}_{\mathrm{CH} 2}\right\|}$	$\frac{V_{\text {DTC (MAX) }}}{\left\|I_{\text {CH2 }}\right\|}$
$\mathrm{C}_{\text {DTC }}{ }^{* 4}$	Calculate from start-up time	$\frac{\left\|I_{C H 1}\right\| \times t_{\text {start }}}{V_{\text {DTC (MAX) }}}$	$\frac{\left\|I_{\mathrm{CH} 1}\right\| \times t_{\text {start }}}{V_{\text {DTC (MAX) }}}$	$\frac{\left\|\mathrm{I}_{\mathrm{CH} 1}\right\| \times \mathrm{t}_{\text {start }}}{\mathrm{V}_{\mathrm{DTC} \text { (MAX) }}}$
	Calculate from shat down time	$\frac{\mathrm{I}_{\mathrm{DIS} 1} \times \mathrm{t}_{\text {short }}}{\mathrm{V}_{\mathrm{DTC}(\mathrm{MAX})}-\mathrm{V}_{\mathrm{OSCL}}}$	$\frac{I_{\text {DIS1 }} \times t_{\text {short }}}{V_{\text {DTC (MAX) }}-V_{\text {OSCL }}}$	$\frac{\mathrm{I}_{\mathrm{DIS} 1} \times \mathrm{t}_{\text {short }}}{\mathrm{V}_{\mathrm{DTC}(\text { MAX })}-\mathrm{V}_{\mathrm{OSCL}}}$

note: V_{F} : Forward voltage of outer diode.
$V_{C E}$ (sat): Saturation voltage of M62212 or saturation voltage of current buffer transistor
Please setting the oscillation frequency first and calculate each constant value.

1. Please setting Δl_{0} about $1 / 3$ to $1 / 5$ of maximum output current
2. $\left|\mathrm{V}_{\mathrm{O}}\right|=\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \times \mathrm{V}_{\mathrm{REF}}$
3. Please setting R2 about few $\mathrm{k} \Omega$ to score fo $\mathrm{k} \Omega$ because output voltage don't undergo a influence of input current (Terminal 7)
4. Please setting $V_{D T C}$ (MAX) to satisfy $D_{\text {(MAX) }}$, fixed from characteristics of $D_{\text {(MAX) }}-V_{D T C}$ (MAX). $I_{C H 1}$ means $D T C$ charge current when start-up ($-45 \mu \mathrm{~A}$ typ), $\mathrm{I}_{\mathrm{CH} 2}$ means DTC charge current when stable state ($-10 \mu \mathrm{~A}$ typ), $V_{\text {OScL }}$ means lower limit voltage of oscillation waveform (0.45 V typ), and $\mathrm{I}_{\mathrm{DIS} 1}$ means DTC discharge current 1 (50 $\mu \mathrm{A}$ typ).
$\mathrm{t}_{\text {start }}$ means time interval when terminal voltage of DTC increase to $\mathrm{V}_{\text {OSCL }}$ from lower voltage and to start switching at first.
$t_{\text {short }}$ means time interval when output is shut down after output is shorted

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble

1. Renesas Technology Corp. puts the maximer may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the tim publication of these mat that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, inc
 450 Holger Way, San Jose, CA 95134-1368, U.S.A
 Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

